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Editor’s notes:
This article advocates the need for a new autonomics foundation with a 
focus on decision-making logic and its processes for building trustworthy 
autonomous systems. 

—Selma Saidi, TU Dortmund

 Autonomous systems are already able to 
replace humans in carrying out a variety of functions. 
This trend will continue in the years to come, with 
autonomous systems becoming central and crucial to 
human society.1

Many organizations are already striving to 
develop the next wave of trustworthy, cost-effective 
autonomous systems. However, extremely high lev-
els of complexity and criticality present fundamental 
new challenges.

Next-generation autonomous systems will be 
expected to operate under conditions that will often 
be unpredictable at the time of their development. 
Although test environments and simulation engines 
provide ever-increasing variation and realism [see 
CARLA (www.carla.org), HEXAGON MSC (www.
hexagonmi.com/products/computer-aided-engi-
neering-cae-software/msc-software), and COGNATA 
(www.cognata.com)], these are still constrained and 
synthetic. Engineers must be able to assure customers 
and regulators that the system will function correctly 
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and safely, not only in a 
large variety of known 
critical scenarios but also 
in complex high-risk situa-
tions that were never even 
thought about previously.

There is a grow-
ing awareness that the challenges of developing 
next-generation autonomous systems will be diffi-
cult to accomplish due to weaknesses in established 
methods and processes. The combined commu-
nity that consists of relevant groups in the industry, 
government, and academia, is in the process of 
launching road-mapping activities and large-scale 
collaborative projects, like DEEL (www.deel.ai) 
SAFETRANS (www.safetrans-de.org), HumanDrive 
(www.humandrive.co.uk), and the USA Department 
of Transportation Initiative: “Preparing for the future 
of transportation: Automated vehicles 3.0.”

Still, we argue, this is not enough. The required 
trustworthiness mandates different, and more funda-
mental, advances in certain relevant fields, both for 
development tools and for final system implemen-
tation. To narrow the gap between the challenges 
in developing next-generation autonomous sys-
tems and the present state of the art, the research 
and industry community must construct a common 
engineering foundation. This foundation, which we 
term Autonomics, should address the unique chal-
lenges relevant to such systems, by providing new 
concepts, perspectives, and engineering principles, 
as well as the supporting methods and tools.

We believe that the availability of such a founda-
tion has the potential to dramatically accelerate the 
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1This article abbreviates (and somewhat extends) our earlier paper,  published in 
the Proceedings of the National Academy of Sciences (PNAS) [1].
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deployment and acceptance of high-quality, certi-
fiable autonomous systems, built for the benefit of 
human society.

Next-generation autonomous systems

Preliminary definitions
Over the years, many definitions have been 

offered for autonomy (e.g., [2]). Autonomic com-
puting, a term coined by IBM in 2001, focuses on 
systems capable of performing self-management, 
and, in particular, automating dynamic configura-
tion. The research area of agent-based design and, 
in particular, multiagent systems offers a perspective 
of autonomy in paying special attention to the issue 
of combining local goals with collaboration rules 
and distributed algorithms to achieve system-wide 
overall goals. Autonomy is often associated with 
self-awareness (e.g., [3]), which implies the system’s 
ability to perceive changes in the environment and 
use “knowledge” of its own states to react adequately 
so that a set of goals is achieved. Symbiotic comput-
ing studies how autonomous systems can interface 
and collaborate with humans and with complex 
organizations, considering the many technical, com-
mercial, and ethical implications thereof.

To streamline the ensuing discussion, we offer, in 
this section and the next one, definitions for some 
basic concepts (see also [4] and [5]).

Systems are the artifacts that development teams 
are out to build. A system works within and reacts 
to, an external environment, and it consists of two 
types of components, agents and objects. The coor-
dinated collective behavior of the system’s agents 
and objects is designed to meet some global, sys-
tem-wide goals.

Objects are those components whose pro-
grammed behavior is not affected during system 
development. Objects have states, that can be 
changed by agents or by other objects or can change 
“spontaneously,” for internal reasons. These objects 
become part of the system’s internal and external 
environments, respectively.

Agents are the main behavioral elements of an 
autonomous system. They are those designed (pro-
grammed, built) as part of the system’s development 
process. Agents have agency: they are proactive and 
pursue specific goals which may change dynami-
cally. Agents can monitor objects from the internal 
and external environments and can change their 

states. They can also coordinate their own actions 
with other agents.

The environment of a system is the collection of all 
entities with which the system might interact. It may 
include other systems (with their objects and agents) 
and stand-alone objects, and of course humans—
with their unpredictability, rationality, initiative, and 
power and authority to modify system behavior.

Defining autonomous behavior
We say that a system or an agent (for simplicity, 

we shall stick to the system below) manifests auton-
omous behavior if it embodies the following five 
behavioral functions, which are carried out with lit-
tle or no intervention from humans or other systems.

Two functions are combined to enable the sys-
tem to build for itself a useful representation of the 
state of the external environment. Perception is the 
function that inputs stimuli, interprets their basic 
meaning, and removes ambiguity, yielding relevant 
information. The second function is model update, 
which uses the information provided by perception 
to create and constantly update an integrated run-
time model representing the system’s environment 
and its states. This model will then be used in on-go-
ing decision-making.

Two other functions constitute the system’s adap-
tive decision process. Decisions consider many 
possibly conflicting goals, in a way that depends on 
the current state of the system and its environment. 
Goal management chooses from among the set of 
goals the ones that are relevant to the current state. 
Planning computes a plan to achieve the set of goals 
produced by goal management, subject to state-de-
pendent constraints; this is the agent’s action in 
response to the current environment state and may 
consist of a sequence of commands to be executed 
by actuators.

The fifth function that characterizes autonomous 
behavior is self-adaptation, which caters for dynamic 
adjustment over time of the system’s goals and the 
goal management and planning processes, through 
learning and reasoning, based on the evolving state 
of the system and its environment. Such adaptivity 
could come in many forms: very near term, e.g., 
using trial and error and recent experiences, as 
well as “life-long learning” by the system, constantly 
reevaluating its entire history to better achieve its 
goals in a dynamic unpredictable environment.
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Next-generation autonomous systems are 
different

Next-generation autonomous systems, both those 
that are already beginning to emerge and definitely 
those of the future, differ from existing systems in 
several key aspects. 

They have a large variety of possibly-conflicting 
system goals. A typical next-generation autonomous 
system will not be focused on a small number of 
well-defined goals, such as winning a game of chess 
or reaching a destination without collisions. It will 
typically face a far wider and more elaborate set of 
goals, as humans often do.

Their environment is dramatically less predict-
able. Even autonomous systems of the present 
already have to deal with an enormous number of 
known environment configurations, and those we 
do not know about yet will obviously add a whole 
new order of magnitude to this difficulty. While 
an autonomous vehicle’s handling of varying and 
evolving road topologies and traffic volumes and 
speeds can probably be addressed using existing 
technologies, there are more complex issues, which 
humans handle routinely and which are still not 
adequately addressed. For autonomous vehicles, 
these include, e.g., the whims of bicycle and motor-
cycle riders; police instructions, spoken or signaled; 
poorly marked temporary diversions; dealing with 
passenger medical emergencies; understanding and 
reacting to changes in needs and new requests of 
passengers; abuse by humans inside and outside the 
vehicle; minor conflicts and accidents; the need to 
assist others in distress; and more. These kinds of dif-
ficulties are caused by the increased dependency on 
hard-to-predict aspects of the dynamic environment, 
compounded by the increased mobility, distribu-
tion, and sheer multitude of systems.

They require rich interaction with humans. The issue 
of interaction with humans goes much deeper than 
classical human–computer interaction. First, because 
future systems will operate in common human envi-
ronments, having to interface with humans over 
whom the owner of the autonomous system has 
no control. They will be interfacing with humans in 
wholly new ways, even as part of normal everyday 
routines, such as a human and a robot negotiating the 
right-of-way through an office door, a human pointing 
out a spill on the floor to a passing robotic cleaning 
assistant, or a human and robot apologizing or argu-
ing about a small accident/collision or misstep.

The human–computer interface itself will have 
to be far more extensive than a mere display and 
keyboard. It will encompass much of what the 
autonomous system understands and does, as well 
as aspects of the human’s perception of the auton-
omous system and of the environment in which it 
operates. Special attention has to be paid to those 
parts of the interface that allow a human to interrupt 
the operation of the autonomous system or change 
it abruptly, e.g., when observing that an unexpected 
event or activity blocks the normal, preprogrammed 
operation of the system.

Why a new foundation?
We call upon the research and engineering 

community to create and evolve a foundation for 
developing such systems, which will recommend 
engineering practices and methods, point at tools 
and technologies, and offer open-source bases and 
examples. It will also include meta-information, such 
as reliable means for selecting among system design 
and development alternatives. Although this auto-
nomics foundation should touch upon all aspects of 
system engineering, it will focus on “burning” issues 
(such as those we discuss in the upcoming sections) 
and propose ways to deal with them throughout 
development.

The existence of gaps between the state of the art 
and achieving the desired trustworthiness has been 
articulated, e.g., in the IEEE whitepaper [6] and 
Neumann [7]. To reinforce our argument we shall 
focus here on one central aspect, which is at the 
very heart of autonomous system engineering—the 
decision-making logic and its processes. We present 
three partially overlapping challenges in developing 
decision-making processes, for which satisfactory 
solutions have yet to come.

Challenge I: Specifying behavior
The behavioral specification is needed in vir-

tually all stages and activities of the development 
process: requirements, design, simulation, testing, 
verification, and validation. We argue that in the 
next-generation autonomous systems the very spec-
ification of behavior introduces new issues that call 
for extensive research.

When it comes to complex autonomous sys-
tems, the specification of even a single simple goal 
is hard. Assume that, we want to completely auto-
mate a floor-cleaning process. What kinds of the 
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specification are we after? Should it be focused on 
actions (e.g., where and how to sweep), on environ-
ment objects and entities (e.g., what kinds of dirt 
should be removed, and from where), or on states 
and results (e.g., what should the floors and shelves 
look like once the job is done)? How should one 
tell developers (and the system) about the need to 
move small objects or unplug devices that are in the 
way, or about dealing with such risks as breaking 
something?

We need here ways to describe the relevant 
“world” and its associated behaviors. For this, we 
propose to develop domain-specific ontologies of 
objects, properties, actions, and relations. This direc-
tion may extend or learn from current ontologies 
like the CYC ontology project, Google’s Knowledge 
Graph, the OWL web ontology language, and others, 
but may also take on different design directions.

In the context of autonomous systems, some pro-
gress along these lines can be found in, e.g., Traffic 
Sequence Charts [8], the United States’ National 
Highway Traffic Safety Administration (NHTSA) sce-
narios [9], Autoware software for autonmous vehi-
cles (https://www.autoware.auto/) and open-source 
simulators like CARLA. Each of these uses its own 
terms and concepts as building blocks in bottom-up 
tool construction.

Beyond the issue of specifying single goals lies 
the extreme difficulty of specifying how the system 
should balance, prioritize, or weigh several, often 
competing goals under a bewildering multitude of 
circumstances. Many future generation autonomous 
systems will have to make complex decisions involv-
ing major human and business risks, and we doubt 
that stakeholders can prescribe in advance what the 
system should do in each case. And, of course, in 
addition to such technical issues of specification, 
there are also weighty ethical issues that are outside 
the scope of this article.

Dynamic changes in specifications constitute yet 
another complicating aspect. Humans most often 
deal reasonably well with goal updates in means 
to achieve them, or in assumptions about the envi-
ronment. Autonomous systems will have to sup-
port such modes of communication and reactive  
behavior [4].

Explainability and interpretability are espe-
cially relevant to emergent properties, particularly 
for those parts of the solutions based on neural 
nets and other “black-box” approaches. In a way, 

explanations induce a model on the seemingly mod-
el-less machine-learning solution and summarizing 
such execution patterns automatically is a challeng-
ing problem as discussed in the “Challenge III: Com-
bining ‘model-based’ and ‘data-driven’ approaches” 
section.

The ability to provide concise explanations of the 
system’s decisions, both in real-time and after the 
fact, will be of great value, allowing developers, and 
the system itself, to judge the programmed decisions 
and adjust them as needed.

In fact, an entire subarea of the domain of spec-
ifications may emerge. How does one provide a 
description of what a system actually did in a par-
ticular case, in a way that is concise, clear, and has 
semantics that is agreed upon by everyone involved? 
Detailed event logs produced by the system, and/
or videos of actual behavior, maybe too large, too 
detailed, or too arcane for the context; say, a discus-
sion of legal responsibility in a court of law, or an 
engineering review of a functional change, together 
with a customer. Yet, a verbal summary prepared by 
a human is prone to error and bias. The same holds 
for the explanation of why a system behaved in a cer-
tain way: describing the rules, algorithms, and com-
putations that drive the system, or the examples it 
was trained on, may not convey a satisfactory expla-
nation. Again, a higher-level summary prepared by a 
human from highly technical information may omit 
important details or incorporate tacit assumptions. 

Challenge II: Analysis
By analysis, we mean simulation, testing, formal 

verification, and system validation against the tacit 
needs of the stakeholders (STV&V for short). While 
these techniques will be of paramount importance 
for next-generation autonomous systems, it is well-
known that they, alone or combined, cannot pro-
vide complete assurances even for current systems.

The various STV&V techniques all involve one 
manner or another of executing a system or a model 
thereof in a controlled fashion, and/or traversing 
or analyzing the resulting states. Simulation is per-
haps the most “hands on” of these and facilitates 
observing emergent behaviors under a variety of 
conditions. However, the simulated environment 
will always be an abstraction and simplification of 
reality. As mentioned earlier, there are numerous 
simulation tools relevant for autonomous vehicles. 
While these are effective and provide important 
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features—albeit, spread across different tools—
the foundation proposed here calls for additional 
important capabilities to deal with the vast number 
of objects and variables involved in complex auton-
omous systems, and the even greater number and 
intricacy of the interactions between them.

Autonomous systems will typically have to deal 
with numerous new elements, which are often 
ignored or simplified, or are controlled by other sys-
tems. As we did for the specification challenge, we 
list below some of the issues to be addressed.

One, which is a precondition to any kind of analy-
sis, has to do with the modeling of environments. We 
envision using domain-specific libraries for various 
kinds of systems and tasks, to deal with the physical 
three-dimensional space of real-world objects and 
their properties, including mobility, effects on other 
objects, and associated risks. These libraries will be 
different for different application areas.

The second issue which is particularly important 
for analysis involves the infrastructure needed for 
STV&V. This would have to include mechanisms 
that adequately orchestrate and control executions. 
Furthermore, the infrastructure should be “state-
aware” and transparent, being able to communicate 
with engineers using natural interfaces and logs that 
describe intuitively the state of the external environ-
ment, the internal state of the system and its agents, 
and the state of agents’ perception of the external 
environment. The complexity of all this is amplified 
by the unpredictability of behavior. Even the rela-
tively simple problem of determining which of the 
agent’s states and interactions may occur in parallel 
with which others is extremely difficult.

The third major challenge has to do with con-
trolling and measuring the behavioral coverage 
achieved via testing, whether virtual/in silico or by 
deployment in the real physical world. Such cov-
erage refers to the space of all composite systems 
states, across multiple components, as well as of 
the paths and scenarios for reaching these states. 
Makers of autonomous vehicles sometimes present 
the distances (real and simulated millions of miles) 
that their products have driven (see web postings 
for Google’s Waymo and Uber) as an indicator of 
behavioral coverage. Such metrics will have to be 
extended. Even what appears to be the bare mini-
mum here—a practical approach to measuring 
overall composite state coverage for both system 
and environment—is already hard enough (see 

discussion in [10]). We envision having to develop 
techniques to automatically generate rich sets of sce-
narios, subject to criteria that can be external, i.e., 
from the environment and the real world, or internal, 
such as intricate behavioral combinations of spec-
ification and implementation entities. Furthermore, 
given the inability to exhaustively cover all run-
time possibilities, we need support for accelerated 
metamorphic testing in physical environments; i.e., 
checking thoroughly that the system behaves cor-
rectly for a given scenario, and then quickly provid-
ing assurances for many other scenarios that differ 
from the basic scenario only by small environmental 
changes.

Finally, with regard to STV&V, the autonomics 
foundation will have to address formal verification. 
Even the best current verification methods can be 
used successfully only for single components or 
for greatly simplified models of the entire system. 
Also, not only is the behavioral specification of the 
system itself very hard, but it is no easier to specify 
the behavioral properties that need to be formally 
verified in terms that are readily aligned with the 
expectations of the human users and engineers. This 
is further complicated by the fact that some essential 
properties are quantitative ones, spanning multiple 
scales.

The increasing integration of components based 
on machine learning implies that their verification 
and the ability to supply adequate explanations of 
their behavior will become increasingly important. 
These problems are long recognized as being very 
difficult, and there is an emerging field of research 
around them, whose initial results look very promis-
ing such as the broad field of generative adversarial 
networks (GANs) and the Reluplex network verifica-
tion method [11].

Challenge III: Combining “model-based” and 
“data-driven” approaches

We use the term model-based to emphasize the 
fact that the designer is required to build and pro-
vide a thorough technical description (a model) of 
the problem, its inputs, its outputs, and the required 
processing and behavior, in terms that are aligned 
with the problem domain. This includes classical 
software development approaches, all of which 
employ traditional programming languages and pre-
scribe step-by-step processes as well as model-driven 
engineering (MDE) techniques.
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In contrast, we use the term data-driven to encom-
pass all techniques that involve machine learning 
(including, but not restricted to, deep neural net-
works; abbreviated ML hereafter), statistical anal-
ysis, pattern recognition, and all related forms of 
computing in which the system’s behavior is derived 
from supervised or unsupervised observation.

There is a growing call to find ways to combine 
the two techniques, leveraging their relative advan-
tages to complement each other [12]–[14]. Never-
theless, there is still no agreement on how to do this, 
the combination being very different from integra-
tion practices in classical engineering.

There are several differences between traditional 
software development and constructing solutions 
based on ML, which must be taken into account 
when trying to integrate the two. To better concen-
trate on the integration issue in this subsection, we 
disregard the still open-research problems in each 
of them.

The first difference involves the general life cycle. 
Traditional software engineering calls for require-
ments elicitation and specification, design, code, 
testing, and so on, whether in extended waterfall 
methodology development phases or short agile 
sprints. In contrast, developing a system based on ML 
involves totally different stages, such as the collection, 
validation and sampling of training data, the actual 
training, evaluation, and revision and retraining.

The second difference concerns specifying 
requirements. Consider even the simple case, that the 
brakes must be activated when a stationary obstacle 
is sensed and the stopping time at the current speed 
is less than 1 s. The requirement is well defined, and 
engineers can translate it into working components, 
but for a system trained to avoid collision based on 
positive and negative examples, it is not at all clear 
how to use the requirements or how to incorporate 
them into the respective ML components. The fact 
that specified requirements are often associated 
with operational contexts further highlights the dif-
ferences between the two approaches in this area.

Related to specifying requirements is the issue 
of after-the-fact explainability (also referred to 
interpretability). This calls for the ability to justify, 
or rationalize, a particular system decision using 
problem-related parameters and arguments, e.g., to 
describe what the system does and the underlying 
rules, algorithms, and computations. Despite the 
remarkable success of neural nets, their internal 

workings are often a mystery. Current ideas address-
ing this problem are still a far cry from the situation 
with traditional programming. Moreover, even if 
explainability and interpretability tools are eventu-
ally able to extract the tacit rules behind the oper-
ation of large neural nets, the way these rules relate 
to the net’s actual mechanisms will be very different 
from the relation between natural language descrip-
tions and source code in classical programming 
languages.

Additionally, this lack of explainability for neural 
nets makes it very difficult to analyze their behavior. 
While some initial work has been done on checking 
properties thereof (see [11]), there is still much to be 
done on their testing and verification.

An important related difference involves decom-
posability, which is crucial in most stages of devel-
opment, e.g., for understanding and anticipating 
system behavior, finding and fixing errors, carry-
ing out enhancements, and assessing the impact 
of changes. In model-based designs, most system 
artifacts can be hierarchically decomposed into 
well-understood functional and structural elements, 
the role they play in the full system being more-or-
less clear. In contrast, the design of data-based ML 
solutions is typically accompanied by an end-to-end 
mindset—system-based or problem-based. Being 
able to decompose a machine-learning solution into 
meaningful parts appears to be an interesting chal-
lenge, which will, of course, bear upon explainabil-
ity and verification.

Finally, we mention the differences between the 
two approaches with regard to their trustworthiness 
and certification. Many kinds of autonomous systems 
are highly critical and their design calls for provid-
ing appropriate trustworthiness guarantees for func-
tionality and reliability. These are often specified in 
standards, like DO178B for avionic systems and ISO 
26262 for electronic components in the automotive 
industry. In principle, model-based techniques give 
rise to predictability at design time. Achieving for 
components based on ML an accepted level of trust-
worthiness and certification requires wholly new 
technical solutions.

These significant differences illustrate the mag-
nitude of the methodological and technical integra-
tion challenges that the autonomics foundation will 
have to address. To give a relatively straightforward 
example of this, consider a proposed system that is 
to ultimately consist of conventional model-driven 
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components (based, e.g., on an object model, algo-
rithms, scenarios, rules, and decision tables) and 
ML data-driven components (based, e.g., on neural 
nets). At some point, the engineers should have cri-
teria to decide which subproblems should be solved 
using which of the two approaches, or perhaps use 
both, and choose among the various ways by which 
these components can and should be combined 
(see [1] for more details).

Discussion
Next-generation autonomous systems are definitely 

going to be built and will become commonplace in 
the years to come. Their predicted advent reflects the 
transition from “narrow” or “weak” AI to “strong” or 
“general” AI, which cannot be achieved by using just 
conventional model-based techniques or machine 
learning alone. Thus, classical software and systems 
engineering will have to be thoroughly enhanced.

Autonomous vehicles provide an emblematic top-
ical case illustrating the challenge. Due to the lack of 
standards and compliance assessment techniques, 
some public authorities allow self-certification for 
autonomous vehicles, transferring the responsibil-
ity back to manufacturers, even though the public 
might expect otherwise, given the criticality of such 
systems. Another issue is evidence. Manufacturers 
will often publicize only partial information about 
their testing, such as the distance an autonomous 
vehicle has been test-driven. Another trust-related 
issue is the fact that critical software can be updated 
regularly, which raises the concern that updates 
might be deployed with less-than-adequate testing, 
causing problems of critical impact.

All this has generated lively public debates. Many 
important voices tend to minimize the risks from the 
lack of rigorous design methods: Some claim that 
we should accept the risks because the benefits 
will far outweigh them. Others accept the empiri-
cal methods and argue that rigorous approaches to 
complex problems are inherently inadequate. Some 
people are overoptimistic, arguing that we really do 
have the right tools, and it is just a matter of time. 
And besides all of this, we must take into account 
all relevant ethical/moral, legal, social, and politi-
cal issues, a vast topic that is obviously outside the 
scope of this article.

In summary, we are at the beginning of a revolution, 
where machines are called upon to progressively 

replace humans in their capacity for situation aware-
ness and adaptive decision making. The extent to 
which people will ultimately use and benefit from 
autonomous systems will depend on how much they 
trust them. We believe that a new engineering and 
scientific foundation for how to develop autono-
mous systems will be an important contribution to 
such progress.� 
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